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Rye (Secale cereale L.) is increasingly recognized as a sustainable cereal with
significant nutritional, ecological, and economic potential. While previous studies
have highlighted its dietary fiber (DF), bioactive compounds, and associated
health benefits, this review provides an updated synthesis that integrates recent
findings on rye's role in human health, food security, and sustainability. In
particular, it emphasizes novel evidence on rye's functional properties, its
potential contributions to plant-based dietary strategies, and its economic
and social relevance. By consolidating current knowledge and outlining future
directions for product development and dietary innovation, this work offers a
fresh perspective that extends beyond earlier O reviews focused on rye.

KEYWORDS

rye, wholegrain consumption, nutrition composition, health benefits,

non-communicable diseases, sustainability, environment

1 Introduction

Plant-based nutrition is increasingly recognized as an effective long-term strategy for
addressing both health and environmental challenges (191). In this context, rye emerges as
a resilient and sustainable crop offering significant dietary, environmental, and economic
advantages (1).
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Rye (Secale cereale L.) is one of the oldest and most resilient
cereal grains in Europe, playing a vital role in both traditional
agriculture and food culture (2). Rye is particularly valued for its
ability to grow in poor soils and cold climates, which makes it an
essential crop in many European regions. Traditionally, rye has
been used to produce rye bread, a dense, nutritious bakery product
widely consumed in countries such as Germany, Poland, and
throughout the Scandinavian and Baltic regions. Beyond human
consumption, rye grain also serves as an important component of
animal feed, supporting the livestock industry (3).

Rye is a rich source of proteins, starch, and bioactive
compounds, such as dietary fiber, antioxidants, and essential
micronutrients (Figure 1). Whole-grain rye contains a high level
of dietary fiber (DF), which supports gastrointestinal health
through antioxidant and anti-inflammatory phytochemicals (4).
In addition to its fiber content, rye grains contain a wide
spectrum of bioactive compounds, including alkylresorcinols,
ferulic acid, catechol, sinapic acid, vanillin, and vanillic acid, that
exhibit antioxidant properties and may support immune function
and mitigate age-associated physiological decline (5, 45). The
micronutrient composition of rye is considered equally vital to
its macronutrient content, playing a critical role in regulating
numerous biochemical processes within the human body. The
inclusion of rye in a nutrient-dense, balanced diet may contribute
to the prevention of various chronic diseases. Notably, rye naturally
contains a distinctive profile of essential vitamins and minerals
(6). Moreover, the synergistic consumption of leguminous and
cereal crops ensures a complete amino acid profile, optimizing
dietary balance. This integrative nutritional approach addresses
potential dietary deficiencies while supporting sustainable protein
consumption strategies (7).

The European sustainability trends in agriculture may lead to
an increasing interest in rye cultivation and consumption (8). The
ability of rye to grow in poor conditions makes it a valuable crop
for farmers, as it can be integrated into crop rotation systems
to improve soil quality, ensuring biodiversity protection through
efficiently managed resources, which supports sustainable farming
(9, 10).

This review presents a thorough and current examination of
the nutritional properties and health benefits of rye, distinguishing
it from other prominent agricultural crops. It provides a fresh
synthesis of the latest research, while also delving into rye’s
vital role in enhancing global food security and promoting
sustainable farming practices. By integrating current research
on ryes economic and social impacts, this review identifies
emerging dietary trends and potential avenues for innovative
product development.

2 Cultivation and consumption of rye
across Europe

The European Union (EU) harvested 7.8 million tons of rye
in 2023, a very similar quantity to that in 2022 (11). According to
The Food and Agriculture Organization’s global statistical database
(FAOSTAT) (12), the top rye-producing countries in the EU
were Germany (3.13M tons) and Poland (2.4 M tons), followed
by Denmark (883.5K tons), Belarus (800K tons), and Ukraine
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(334.6 K tons). Germany’s production, which represents two-fifths
of the EU’s total output, saw a slight decline of 0.3%, contributing
to the overall stagnation across the EU.

Elsewhere, the steep declines in rye production in Spain
(—46.6%) and Denmark (—13.1%) were largely countered by the
increases in Poland (up to 5.4%), Hungary (up to 59.1%), and
Finland (up to 41.3%). The global rye market size was valued at
USD 3.89 billion in 2023 and is expected to grow at a compound
annual growth rate (CAGR) of 3.6% from 2024 to 2030 (11).

Although wheat dominates in many European countries,
rye remains essential due to its adaptability to poor soils and
cooler climates, making it suitable for a wide range of regions.
This resilience makes rye valuable for farmers, especially as it
supports crop rotation, improves soil quality, and prevents erosion
(9). While increasing yield is a key aspect of rye cultivation,
this health-promoting cereal also offers important sustainability
benefits for food and feed production. Rye is a resilient crop
that thrives in poor soils and harsh climates, reducing the need
for intensive irrigation and chemical inputs while improving soil
health through its extensive root system and role as a cover crop
(92 , 10). Additionally, its high dietary fiber content supports
livestock gut health, while its natural pest resistance promotes eco-
friendly farming—making rye a sustainable choice for food and
feed (5).

Germany is the largest producer of rye in Europe, and rye
is deeply ingrained in the country’s culinary culture. Rye bread
(Roggenbrot) is a staple in German households, and the country
is known for its diverse rye-based products. Occupying 28.7%
of the total bread consumption (58.9 kg/year per capita), brown
bread is preferred in Germany, followed by toast bread (21.4%)
and seeded bread or cornbread (15.5%) (14). Rye has long been
a traditional crop in Lithuania and Poland, with rye bread being
a main element of the cuisine (15). The most renowned national
heritage of Lithuania is dark rye bread, traditionally made from
wholemeal rye flour. French rye is primarily used in the production
of bread and rye-based products. In countries such as Denmark
and Finland, where wholemeal rye bread is the most widely
consumed, around 40% of the dietary fiber comes from rye-based
products (16). Rye bread is the main source of whole-grain intake,
contributing 58% in children and 64% in adults (17). While wheat
is the primary cereal crop in France, rye has long been an important
crop in the northern regions of the country, where the cooler
climate allows for rye cultivation. In other European countries, rye
consumption is moderate to low but still prevalent, particularly
in Austria, the Czech Republic, Slovakia, and Latvia, where it is
featured in traditional breads and baked goods (14). These trends
highlight the cultural and regional differences in rye consumption
across Europe, showcasing its persistent importance in traditional
diets and its potential role in promoting sustainable and health-
conscious eating habits.

3 Rye nutritional quality

Rye (S. cereale L.), a member of the Poaceae family and
genetically related to wheat and barley, is widely recognized for its
nutritional value (18). Compared to other cereals, rye demonstrates
superior nutritional value, providing higher levels of dietary
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* Slowed glucose and cholesterol absorption - improved glycemic
Dietary fiber control; reduced cholesterol level- prevention of T2D diabetes
and heart problems
(soluble arabinoxylans) o Increased satiety — weight management
* Bowel health — production SCFAs —reduced inflammation
* Converted by gut microbiota to enterolignans -> Estrogen-like
. activity - Reduced risk of hormone-related cancers (e.g. breast,
Lignans prostate)
* Antioxidant effects - Reduced oxidative stress
¢ Biomarkers of whole-grain intake - Linked with reduced risk of
Alcylresorcinols type 2 diabetes and CVD
* Antioxidant & antiproliferative activity
. . * Antioxidant activity -> Reduced oxidative stress & inflammation
Phenolic acids — Endothelial function impr - Cardi ilar
(ferulic, vanillic, synapic, etc.) protection
“ * Mg - Insulin sensitivity, glucose metabolism; Zn, Se >
Minerals antioxidant enzyme support;
(ca' Mg, Zn, Fe, P, se) *M, Ca, P - supports bone density and mineralization
Vitamins ¢ Bone health; energy metabolism, nerve health, and red
(B-group, vit. A, E) blood cell production
FIGURE 1

Rye bioactive compounds and their health outcomes.

fiber, antioxidants, health-promoting phytochemicals, and essential
macro- and micronutrients (Figure 2). Additionally, rye exhibits
greater resistance to diseases and various pathogenic stresses (19).
Due to its richness in nutrients and bioactive compounds, rye is
widely used in the food industry, second only to wheat, for making
bread, biscuits, and flakes (20).

3.1 Rye macronutrients

Rye fiber supports weight regulation and promotes digestive
health (21). Rye grain has higher fiber content than other cereals
(22) (Table 1).

The main components of rye fiber are arabinoxylans, fructans,
and p-glucans, which have a structure similar to wheat but
a higher percentage of soluble AX (23). Arabinoxylans bind
water effectively, which is beneficial for digestion (24). B-Glucan,
a soluble fiber, provides health benefits by moderating blood
glucose, insulin, and cholesterol levels (25). Rye is also rich
in fructans, which exhibit distinct functional properties relative
to other cereals (26). Fructans serve as a primary carbon
source for bifidobacteria, supporting gut health and protecting
against pathogens (27). As a prebiotic, fructans improve glucose
regulation and lipid metabolism, and reduce lipopolysaccharide
levels (28).

The
properties of rye in comparison to other common cereals

macronutrient composition and key nutritional

are presented in Table I. The protein content in rye kernels

Frontiersin Nutrition

varies depending on the genotype and growing conditions (2).
Rye contains less protein on average than wheat, barley, and
oats (29).

Albumins are the main protein fraction, followed by globulins,
prolamins, and glutelins (20). Compared to wheat, rye proteins
offer a slightly better amino acid profile with higher levels of lysine,
proline, and glutamine, although they remain limited in tryptophan
and isoleucine (30). Rye is notable for its relatively high lysine
content compared to wheat and triticale, although lysine is still the
most limiting amino acid in rye and other cereals (31). The starch
content in rye grain is lower than in wheat but higher than in barley
(2, 32). Rye lipids, rich in polyunsaturated fatty acids, contribute
to health benefits and protect against chronic diseases such as
cardiovascular issues, neurological disorders, cancer, inflammation,
obesity, and diabetes (33). Rye’s lipid content is similar to that of
oat, slightly higher than buckwheat, barley, and wheat (2). Rye also
contains more unsaturated fatty acids than oats, triticale, durum
and common wheat, and barley-linoleic acid being the dominant
type (34, 35).

3.2 Rye micronutrients

Rye naturally contains a distinctive composition of
micronutrients that support numerous biochemical processes
in the human body (36). While other cereals may be
richer in some minerals, rye stands out for its high dietary

fiber content and wide range of vitamins and bioactive
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Comparative Composition of Cereal Grains (normalized values)
Lignin —— Rye
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Cellulosg —— Barley
Wheat
-fhee extract (NFE)
Arabinoxj Ash
Dietary f
A
~—Wheat
VitaminE.— = - Barley
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Vitamin B2
Vitamin B1 ©
Phytase
B
FIGURE 2
(A, B) Nutritional components of rye compared to wheat, barley, and oats.
compounds (35), making it a valuable component of a Notably, rye has the highest phytase activity among oats, barley,

healthy diet, especially in comparison with whole wheat and wheat, meaning it has the greatest potential to break down
(Figure 2). phytates. Compared to the other major food crops, oats have a
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TABLE 1 Macronutrient composition and nutritional properties of rye compared to other cereals.

Component Rye grain Comparison with other cereals References
Dietary fiber (DF) 19.9% TDF; 13-17% of whole grain; ~20% soluble. Higher than barley (15.2%) and wheat (13.5%); rice (22,23,182)
Main components: AX (8.0-12.1%), fructans (2.7-9.9%). More soluble AX compared to wheat
(4.5-6.6%), B-glucans (1.3-2.2%).
Arabinoxylans (AX) | ~64% of rye DF; high water-binding capacity Higher solubility and quantity than in wheat (23,24)
fructans Rich source; prebiotic, supports gut microbiota, Unique among cereals (26-28)
regulates glucose and lipid metabolism.
B-Glucan Soluble DF lowers blood glucose, insulin, and Similar components in barley and oats, but lower (25)
cholesterol. concentration
Protein 8-15% (average ~11% dry weight); varies by genotype Lower than wheat (17.8%), barley (17.3%), oat (13%), and (2, 20, 23, 55)
and conditions. Main proteins: albumins (29-40%), maize (10.4%)
globulins (8-11%), prolamins (17-19%), glutelins
(9-15%).
Amino acids Higher lysine, proline, and glutamine than wheat; Lysine: rye (3.49 g/kg) > wheat (3.22 g/kg) > triticale (3.01 (30,31)
limited in tryptophan and isoleucine. g/kg). Still a limiting amino acid in cereals
Starch 55-65% Lower than wheat (63-72%), higher than barley (50-64%). (2,32)
Lipids 2-3%; high in polyunsaturated fatty acids. Comparable to oat; higher than buckwheat (1.8%), barley 2)
(1.5%), and wheat (1.2%).
Fatty acids (FA) Unsaturated FA (81.46%); linoleic acid (18.9-59.3%). Slightly higher UFA than oat (80.12%), triticale (79.51%), (34, 35)
wheat, and barley.

relatively high phytate content. All cereal grains have significant
amounts of phytate, but the lowest content of the phytate-cleaving
enzyme, phytase, is in oats compared to wheat, barley, and rye (37).
Rye genotypes also exhibit higher levels of Ca and Mg compared
to triticale (38). Rye flour provides significant amounts of folate,
which is recognized for its role in preventing megaloblastic anemia
and reducing the risk of neural tube defects during pregnancy (39).

Table 2 provides a detailed comparison of the micronutrient
content of rye with that of other cereals, highlighting its unique
nutritional benefits. The main bioactive phytochemicals in rye
are phenolic acids, phytosterols, alkylresorcinols, and lignans
(16). Several other bioactive compounds, including flavonoids,
anthocyanins, tocopherols, and tocotrienols, have also been
identified in rye (5, 40, 41). Furthermore, rye is a good source of
a-tocopherol similar to wheat; however, oats are characterized by
the highest vitamin E content (2, 35).

Plant-derived macronutrients and phytochemicals play an
essential role in supporting a healthy lifestyle due to their
nutritional and health-related benefits, including prebiotic effects
on gut microbiota and antioxidant capabilities (5). By mitigating
the damaging effects of free radicals and oxidative stress, they
exhibit antioxidant and anti-inflammatory properties that promote
both intestinal and overall systemic health (42).

4 Health benefits of rye

4.1 Digestive and cardiovascular health

Rye dietary fiber (DF) —notably arabinoxylans and p-glucans—
slows gastric emptying, which may improve nutrient absorption
and help maintain normal intestinal motility (42). Dietary
metabolites act in concert with the gut microbiota to help support
intestinal ecosystem balance. According to the literature, metabolite
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profiles from rye sourdough and in vitro colonic fermentation
appear more favorable for intestinal health than those from other
cereals (42).

In addition, rye fiber exhibits prebiotic effects—it can suppress
pathogens and selectively promote beneficial bacteria (e.g.,
Lactobacillus, Bifidobacterium), which ferment fiber into short-
chain fatty acids (SCFAs) that help regulate metabolic and immune
processes (43, 44). Regular consumption of whole-grain rye can
increase beneficial bacteria and promote a healthier gut microbiota,
which is associated with improved metabolic and immune
outcomes (45). The intestinal functionality of rye products may
include increased fecal bulk, binding and efficient elimination of
potentially toxic metabolites, and release of protective components
such as lignans (46).

Currently, there is one EU-authorized health claim, based
on a positive scientific opinion issued by the European Food
Safety Authority (EFSA) Panel on Dietetic Products, Nutrition,
and Allergies (47). This claim states that rye DE, when consumed
in sufficient amounts, contributes to normal bowel function.
Moreover, clinical evidence indicates that rye can help prevent
constipation and improve bowel regularity, thereby reducing the
need for laxatives, likely due to its high fiber content (48).
Preclinical and clinical data suggest that incorporating alternative
grains and dietary fiber into sourdough bread formulations can
reduce risk factors for non-communicable diseases and beneficially
modulate the gut microbiota (45, 49).

Beyond its digestive benefits, whole-grain rye consumption
is also associated with cardiovascular benefits. Whole-grain
rye has been associated with improved lipid profiles, lower
blood pressure, and reduced inflammation—factors relevant
to cardiovascular health (43). Elevated total and low-density
(LDL) risk factors
for cardiovascular disease. Diets rich in whole grains are

lipoprotein cholesterol are established

associated with a reduction in cholesterol levels compared to
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TABLE 2 Rye micronutrients and nutritional properties compared to other cereals.

Component Rye grain Comparison with other cereals References
Phytochemicals Concentrated in the bran fraction; phenolic acids Higher polyphenols (125-255 mg/100 g) than in barley (50-196 (16, 36, 78, 183)
(~0.5-1.0 g/kg); Phytosterols (~0.7-1.4 g/kg); mg/100 g), oat (9-34 mg/100 g), wheat (70-145 mg/100 g), and
Alkylresorcinols (~0.7-1.2 g/kg), lignans rice (54-313 mg/100 g); higher alcylres (570-3,220 j1g/g) than in
(18-38 mg/kg) wheat (200-750 Lg/g), barley (150 jg/g), oat, and rice.
Vitamins Vitamin E; B-group vitamins: riboflavin, Higher B-group vitamins than in wheat; Vitamin E lower than in (2,5, 39-41,78)
tocopherol, thiamine, B6, niacin, choline, and oat; lower tocopherols (0.4-0.7 mg/100 g) than in barley (4.7-6.8
folate mg/100 g) and wheat (2.3-8.0 mg/100 g).
Minerals Fe, Zn, Mn, Cu, Ca, and Mg Higher amounts than in wheat; higher Ca (0.02-0.03%) and Mg (35, 36, 38)
(0.13-0.14%) levels than in triticale

a refined-grain diet, and with a reduced risk of coronary heart
disease (50).

Viscous, soluble DF has been shown to lower both systolic and
diastolic blood pressure (51) and to exert more favorable effects
on cardiometabolic risk factors (e.g., blood lipid levels, glycemic
control) than non-viscous or insoluble fibers (52). One mechanism
underlying fiber’s cholesterol-lowering properties is bile-acid
binding in the small intestine, which promotes their excretion (53).
Additionally, alkylresorcinols-phenolic lipids abundant in wheat
and rye may reduce cholesterol absorption, potentially enhancing
rye’s cholesterol-lowering effect (54).

Higher whole-grain consumption is also associated with
lower body mass index and may reduce the prevalence of
metabolic syndrome (MbS), which comprises hyperglycemia,
dyslipidemia, hypertension, and obesity (55). These factors, alone
or in combination, increase cardiovascular disease (CVD) risk
(56, 57). Whole-grain-rich diets have been associated with a
reduced incidence of CVD, largely via improvements in obesity
and lipid profiles (58-60). Overall, the rye-based products may
be particularly useful for elucidating the metabolic effects of
rye consumption.

4.2 Diabetes control and weight
management effects

The glycemic index (GI) indicates the extent to which a
particular type of food raises blood glucose levels after eating (61).
Blood sugar regulation is crucial in managing diabetes; dietary
strategies include emphasizing low-glycemic index (GI) foods and
high fiber, and reducing rapidly digestible carbohydrates (62).
Studies report lower post-prandial glycemic responses when whole
grains are from rye (63). Highly viscous rye soluble arabinoxylans
(AX) resist digestion and may help to attenuate post-prandial
glycemia and cholesterol levels (58, 64). Randomized controlled
trials have indicated that medium-to-long-term whole-grain intake
reduces fasting glucose concentration compared with refined-grain
foods (65).

Reduced insulin sensitivity is a crucial contributor to the
development and progression of type 2 diabetes mellitus (T2DM)
(66). In obesity and T2DM, insulin resistance—a diminished
response to insulin—is common (67). Replacing refined grains
with whole grains leads to improvements in cardiometabolic
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biomarkers associated with cardiovascular disease risk (68). Using
a metabolomics approach, one clinical study found a lower post-
prandial insulin response after sourdough rye bread compared
with wheat bread (69). Prospective cohorts have also reported a
27-30% lower risk of T2DM with higher whole-grain intake and
a 28-37% lower risk with higher cereal fiber intake (70, 192).
Collectively, these findings underscore the vital role of integrating
whole-grain rye as a part of a balanced diet, given its potential to
improve glycemic control and cardiometabolic markers. Rye-based
foods (e.g., bread and porridges) have been reported to be more
satiating than wheat-based products (71), which may aid weight
management. Compared to wheat-based products, consumption of
rye products is associated with lower body weight, likely due to their
higher fiber content and increased satiety (21, 72). Weight gain was
inversely associated with high-fiber whole-grain intake, supporting
the role of whole grains in weight control (73). Some whole-grain
cereals—especially wheat and rye—are good sources of dietary
betaine, which has beneficial effects on obesity, alcohol-induced
and metabolic-associated liver disease, diabetes, cardiovascular
diseases, and certain cancers (74). A primary dietary source of
betaine, cereal grains can provide more than 85% of daily intake
(75). Higher betaine intake is associated with a lower risk of
overweight and obesity (76).

4.3 Anti-inflammatory effects of rye and
role in cancer prevention

Inflammatory reactions can promote the progression of certain
chronic diseases, such as Alzheimer’s disease, type 2 diabetes,
and atherosclerosis (77). Certain phenolic compounds have
shown potential in counteracting these conditions by modulating
inflammatory pathways. Diets consisting of whole-grain cereals,
compared with refined grains and their fractions, have been
reported to influence plasma phytochemical levels and reduce
oxidative stress and inflammation (45, 78). The antioxidant
activity of polyphenols plays an important role in protecting
against oxidative stress-induced neurodegenerative diseases, CVD,
chronic oxidative cellular damage, viral and bacterial infections,
diabetes,
(79, 80).

Regarding the anti-inflammatory effects of whole-grain diets,
most studies focus on the health benefits of phenolic acids (PA)
and their antioxidant properties. Most PAs in rye grain are in

inflammatory disorders, and infectious illnesses
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bound form, as in other cereals, with only 1-5% as free phenolic
acids, of which ferulic acid is the most abundant (81). Water-
soluble PAs, containing only 10-30% of the total content, exhibit
most of the antioxidant activity (81). According to the literature,
the content of phenolic compounds is 15- to 18-fold higher in
rye bran than in the endosperm, which contains only 17% of
the total phenolic content (82). PAs in rye grain possess anti-
inflammatory effects by potentially reducing pro-inflammatory
cytokines, acting as antioxidants to combat oxidative stress, and
supporting overall health through mechanisms that may include
beneficial interactions with the gut microbiota (81).

Lignans are less abundant phenolic compounds that are
generally found in plant material in a bound form (83). Such bound
rye phytochemicals have been reported to increase plasma total
antioxidant capacity, which can directly reduce oxidative stress
(84). Tt has been demonstrated that consumption of wholemeal
rye bread results in a significant increase in plasma and urine
enterolactone levels in healthy individuals compared with white
wheat bread (85).

Whole-grain intake has been suggested to be beneficial in
preventing several lifestyle-related chronic diseases, including
certain types of cancer (73). An inverse association between the
intake of whole-grain products and pancreatic cancer incidence
was also reported by Lei et al. (86). Whole grains, rich in fiber and
lignans, may help reduce the risk of hormone-related cancers, such
as breast cancer (87). The phytoestrogenic properties of lignans
show potential to slow down hormone-sensitive cancers, including
breast, prostate, and colon cancer (46). The lignans in rye undergo
bacterial conversion in the gut to produce compounds that may
help reduce breast cancer risk by lowering estrogenic absorption
(88) and may reduce the risk of developing bowel cancer by
improving bowel function and decreasing the presence of certain
compounds that increase colon cancer risk (89). Rye consumption
may also lower the risk of bowel cancer by improving bowel
function and decreasing carcinogenic compounds in the colon (89).
Furthermore, high-fiber rye and wheat both increased fecal bulk.
Still, only rye significantly increased fecal butyrate concentrations,
which are important for maintaining healthy colonocytes and may
act as anticancer agents (90).

Overall, findings from intake studies suggest that cereal
phytochemicals provide only limited or modest protection against
oxidative stress, indicating the need for further research to confirm
and strengthen these observations.

4.4 Rye diet contribution to bone health

The growth and metabolism of bones depend on trace elements,
which include iron, zinc, copper, calcium, phosphorus, and
magnesium. Both deficiencies and excesses of these elements can
increase the risk of bone diseases, including osteoporosis (91, 92).

Osteoporosis is a major global health issue. It is a systemic
disease that reduces bone mass and quality, making bones fragile
and prone to fractures. These fractures often lead to disability, lower
quality of life, and higher mortality (13, 93). A review of 40 studies
involving over 79,000 older adults from Asia, Europe, and America
found that about 21.7% of them had osteoporosis (94).
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Minerals, such as Ca, Mg, and P, are critical in supporting bone
density and strength. Calcium is essential for the development,
growth, and maintenance of bones (95), and magnesium
participates in metabolic pathways in cells, stimulating the activity
of osteoblasts and enzymes, involved in the bone formation
process, and directly affects bone density (96). Phosphorus is the
second most fundamental component of bone tissue after calcium,
almost 85% of which is stored in bones and teeth (97). Its deficiency
leads to defects in mineral deposition related to bone disorders,
rickets, impaired growth, and disordered bone mineralization (98).

Nutritional strategies are key for preventing osteoporosis.
Besides calcium, vitamin D, and protein (99), short-chain fatty acids
(193), dietary fiber (100), and polyphenols and flavonoids (101) also
contribute to building bone mass.

Recent research confirms that whole-grain diets improve bone
health by increasing bone mineral density and balancing bone
resorption and formation (194). Diets rich in milk, cereal, and
whole grains are linked to higher bone mineral density (102).
Overall, a healthy diet riche in whole grains may help prevent
osteoporosis and lower the risk of fractures.

Rye may enhance bone health mainly due to its abundant
mineral content, which includes Ca, Mg, K, Fe, Zn, Cu, and
vitamins (B vitamins, vitamins E and A) (103) that are essential
nutrients vital for sustaining bone density, strength, and proper
mineralization. Rye stands out among cereals because of its higher
Ca, Mg, and P content, which are crucial for bone mineralization
and density, compared with wheat and oats, which contribute
important minerals but provide less calcium (Table 3). Brown rice
contributes some minerals but is weaker for bone health compared
to rye, and white rice offers minimal benefit (104).

The balanced mineral profile of rye supports bone development
and maintenance, while also helping to prevent conditions such
as osteoporosis and rickets. In addition, its mineral content
contributes to the regulation of metabolic processes involved
in bone formation and repair, making rye a valuable dietary
component for sustaining skeletal health.

5 Antinutrients and toxins in rye and
their reduction methods

5.1 Antinutritional factors and potential
toxins in rye and rye products

Antinutritional (AN) factors are compounds naturally found in
edible seeds that affect the bioavailability of nutrients, especially
proteins, minerals, and vitamins, by binding to them (105). In
this case, antinutritional factors may cause harmful effects on the
growth and performance in humans and animals by disrupting the
uptake and absorption of nutritious components (106). The main
antinutritional substances in rye grain include pentosans, phytates,
trypsin, and amylase inhibitors (107).

The most important cereal antinutrient is phytic acid (PA),
the main storage form of phosphate, amounting to 70% of total
seed phosphate content (108) (Table 4). PA was found in a range
of 0.54-1.46 g/100g and 0.19-0.43 g/100g in rye and rye bread,
respectively (109). PA has the ability to combine metal ions,
especially Zn, Fe, and Ca, making them unavailable in humans
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TABLE 3 Contribution of whole grains to bone health and osteoporosis prevention.

Key nutrients Specific benefits Limitations compared to rye References
Rye High in Ca, Mg, P; also Strongly supports bone density and Less commonly consumed than wheat or rice; (36,103)
contains Fe, Zn, Cu; B-group mineralization; good balance of Ca, Mg, gluten-containing (not suitable for celiac
vitamins, A, E and P; functional food for lifelong patients)
skeletal health
Wheat Good source of Mg, P, Zn, Supports bone metabolism and provides Lower Ca content than rye; mineral (194)
B-group vitamins, vitamin K energy for growth; widely available bioavailability may be reduced by phytates
Oats Rich in Mg, P, Fe, Zn; also Supports bone strength and metabolic Lower Ca content than rye; consumed more as a (184)
contains B-glucans (fiber) activity; fiber has anti-inflammatory breakfast grain rather than a staple
effects beneficial for bone health
Brown rice Provides Mg, P, some B Staple food worldwide contributes to Relatively low in Ca and Mg compared to rye; (104)
vitamins, and trace minerals baseline mineral intake polished white rice loses most nutrients; weaker
effect on bone density

TABLE 4 The levels of potential antinutrients in rye and their impact on health.

Typical level

Health impacts References

Phytic acid Up to 540-1,460 jLg/g d.w. whole meal; higher than in wheat J mineral bioavailability (Fe, Zn, Ca, and Mg), | (41, 108-110)
(390-1,350 pug/g d.w.), oats (420-1,160 jg/g d.w.), and barley protein digestibility; antioxidant at moderate intake
(380-1,120 pug/g d.w.)

Arabinoxylans 6-10% DM (total), 2-3% DM soluble; content differs between rye 4 digesta viscosity (| enzyme access); prebiotic (185-187)
hybrids and population cultivars

Enzyme inhibitors Low-moderate (bran-enriched); accumulate during grain | protein/amidon digestibility; may alter glycemic (136, 138)

(Trypsin/amylase) development amylase-trypsin inhibitors (ATTs) response

Phenolic acids and 0.5-1.5 g/kg bran; content influenced by rye genotype and Antioxidant benefits; may bind proteins (185-188)

alkylresorcinols environmental conditions

B-Glucans 0.5-1.5% DM 4 viscosity; health benefits (cholesterol-lowering) (107,112, 114)

due to very low intrinsic phytase activity in the digestive tract
(41, 110).

Rye and barley have higher levels of trypsin inhibitors than
oats and wheat, but compared to legumes, cereals have much lower
amounts of inhibitors, particularly those affecting proteases and
amylases; however, the presence of digestive enzyme inhibitors
in cereals does not pose significant nutritional issues (105, 106).
The adverse effects of trypsin inhibitors are mainly related to
a reduction in the activity of digestive enzymes and a decrease
in digestibility, as well as the utilization of protein, leading to
poor nutrient utilization, potential pancreatic hypertrophy, and
ultimately, reduced weight gain (111).
rye the
polysaccharides, which can lead to reduced intake, poor

Among cereals, contains most non-starch
nutrient digestion, and ultimately lower body weight (112).
The only effective method to neutralize their anti-nutritional effect
is to use xylanases for the degradation of pentosans (113). It is
noteworthy that rye contains higher levels of soluble arabinoxylans,
compounds that benefit digestive health (41, 114). Furthermore,
the antinutritional effect of water-soluble pentosans is weaker and
may even benefit health by acting as prebiotics (115). Moreover,
the inhibition of enzymes, such as a-amylases, may provide health
benefits related to the prevention of T2D and obesity: the increased
carbohydrate digestion time due to the enzyme inhibition decreases
glucose absorption rate, and this affects the normal post-prandial
plasma glucose level (116, 117).

In recent years, the incidence of cereal grain samples

contaminated with ergot sclerotia and mycotoxins has increased
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worldwide (118-120) (Table 5). The increase in the incidence of
contaminated samples may be associated with changes in the
climate or agricultural practices. In the case of rye, the highest
contamination levels were found in rye milling products, rye bread
and rolls, and rye flakes, demonstrating that rye is the most
contaminated among cereals (121).

In Europe, the ergot alkaloids (EA) producing fungus
Claviceps purpurea is the most widespread Claviceps species that
contaminates food supplies (122). The main crops affected by EAs
are rye, barley, wheat, millet, oats, and triticale, with rye being the
most sensitive to ergot alkaloids. It is highly susceptible to fungal
growth when stored above 14% moisture and at temperatures of
18-30 °C (123). Specifically, EA concentrations in contaminated
grain can increase or decrease after long-term storage (124).
The alkaloids act on the nervous and vascular systems, causing
ergotism (125).

Mycotoxins are toxic compounds produced by certain fungi
on grains, such as rye, particularly in warm, humid conditions
(122). Deoxynivalenol (DON), commonly produced by Fusarium
species during improper storage or wet growing seasons, can cause
nausea, vomiting, and feed refusal in livestock and humans (126).
Zearalenone (ZEA), another mycotoxin from Fusarium species,
mimics estrogen and disrupts hormonal balance, potentially
causing reproductive issues in humans and animals (127). T-
2 and HT-2 toxins produced by various Fusarium species are
characterized as highly toxic and can damage the immune system,
skin, and gastrointestinal tract (195). Notably, rye is the most
resistant to Fusarium head blight and has the least kernel damage
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TABLE 5 Mycotoxins in rye: typical levels and health impacts.
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Mycotoxin Typical level (range/behavior) Health impacts References
Ergot alkaloids Up to 1-5 mg/kg in contaminated grain (safe limit: <0.5 mg/kg in the EU); Vasoconstriction, (122, 185, 187, 189)
(Claviceps purpurea) higher than in wheat, oat (mean 594 pg/kg d.w.), and barley (below detection); neurotoxicity, reproductive
rye = most susceptible crop; 1 under high N fertilization and unfavorable disorders (“ergotism”)
weather
Deoxynivalenol (DON) DON as marker; levels 50-2,000 pg/kg (EU limit 1,250 jug/kg); aat and Nausea, vomiting, GI upset, (118-120, 122, 128, 129,

and conventional rye

barley—lower risk;s enriched in bran; mean 28.8 j1g/kg; present in both organic

and immune suppression 190)

T-2/HT-2 toxins
mean 0.98-2.98 jug/kg; EU monitoring values used

Frequently co-occurs with DON 50-500 pg/kg; ~63% (T-2) and 57% (HT-2);

Cytotoxic, hematotoxic,
immunosuppressive

Zearalenone (ZEN)

organic cereals

Frequently co-occurs with DON; levels 20-500 jg/kg; baking/extrusion |,
<25-80%; present in organic and conventional rye; also widespread in

Estrogenic, endocrine
disruption

Ochratoxin A (OTA)

1-10 ug/kg in stored rye; post-harvest issue; extrusion | <40%; baking | <30%

Nephrotoxic, carcinogenic
(IARC 2B)

compared to triticale, durum, and soft wheat (128). A study of
60 winter rye samples from four varieties cultivated in three
consecutive growing seasons across five different regions of Poland
revealed the presence of DON, T-2 toxin, HT-2 toxin, and ZEA.
Still, their concentrations were low, and none of the analyzed rye
samples exceeded the maximum acceptable mycotoxin levels (129).

Although certain harmful agents can be present in rye,
its essential to carry out more in-depth and broad-ranging
investigations to correctly identify the precise amounts of these
agents and the potential risks they could entail, as the current
research seems to show they are not likely to pose major dangers
to human wellbeing when consumed in typical servings.

5.2 Methods to reduce antinutrients and
toxins in rye products

Various processing methods, such as soaking, germination,
cooking, fermentation, and enzymatic treatment, can reduce or
eliminate antinutritional components in cereals as well as in rye
(105, 106) (Figure 3). In addition, several other methods have
been proposed recently, including extrusion, microwave, and high-
pressure processing (105, 130).

Germination effectively reduces phytate content in wheat, rye,
and barley by 95-99%, as active phytase enzymes break down
phytate salts, providing essential phosphate for the seedling (108).
Rye has the highest phytase activity among grains, surpassing
wheat, barley, corn, and rice (131). The phytate content of rye grain
can be significantly lowered during soaking (132) because phytates
are water-soluble (133).

Moreover, fermentation has been demonstrated to be an
effective pre-treatment tool for wheat and rye to degrading
antinutritive factors such as phytates and increasing mineral
bioavailability (134). Sourdough lactic acid bacteria (LAB) can be
used as a source of phytases, where fermentation leads to a more
suitable pH for flour endogenous phytase activity (135). In addition
to the nutritional benefits of the fermentation process, reductions
in the levels of trypsin inhibitors and other antinutrients, as well
as an increase in antioxidant capacity, have been reported during
fermentation (136, 137). In addition, fermentation of sprouted rye

Frontiersin Nutrition

also significantly increases the levels of folate, free phenolic acids,
lignans, total phenolic compounds, and alkylresorcinols compared
with natural rye (138).

Wet extrusion also offers advantages, including reducing AN,
increasing soluble dietary fiber, reducing lipid oxidation, and
gelatinization of starch (105). Due to the high content of water-
soluble pentosans in rye grains and, therefore, their high viscosity,
they are of limited use in livestock feed (41). Studies have shown
that extrusion significantly reduces the content of the main anti-
nutrient of rye grain—water-soluble pentosans (41, 139).

Extrusion can be used as a tool to modify DF viscosity
and starch retrogradation (139). Breaking down DF structure
(140), which makes non-starchy polysaccharides more accessible to
xylanases and increases the yield of fermentable oligosaccharides,
can alter gut microbiota composition (141). As a result of extrusion
processing, the content of water-soluble pentosans in the winter rye
grain can be decreased by 1.34 times, leading to a certain decrease
in starch in winter rye grain (41).

Extrusion can be used for a significant reduction of the ANF
in cereal bran (reducing PA content by 54.51%, oxalates by 36.84%,
and trypsin inhibitor by 72.39%) (142).

Microwave treatment also lowers antinutritional compounds in
rye grain and significantly decreases the amount of water-soluble
pentosans (41). Depending on the power and duration of the
microwave treatment, the content of water-soluble pentosans can
be decreased by up to 0.44%, resulting in a 2.4 times reduction
in the viscosity of the aqueous extract (41). Overall, these various
and diverse processing techniques, when employed effectively,
significantly minimize the presence of antinutritional factors found
in rye, thereby greatly enhancing its overall nutritional value and
increasing its potential health benefits for those who include it in
their diets.

6 Nutritional and bioactive properties
of rye-based products

Rye flour with varying degrees of milling is widely used,
especially in Eastern Europe, to produce soft breads and crispbreads

using conventional or sourdough processes (6, 15).
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FIGURE 3

Conventional methods for reducing toxins and antinutrients in rye grain and rye products.

In Central Europe, white flour has ~0.5% ash, dark flour
~1.5%, and wholemeal up to ~2.0%. The baking industry
commonly uses light rye flour, while dark rye flour is used for coarse
dark breads. Whole-grain rye flour contains all grain components,
which results in a coarser texture. Rye bread with a high proportion
of whole-grain rye flour is typical in Eastern Europe (143),
containing ~ 12.6% (soft bread) to ~ 17.8% (crispbread) total
dietary fiber (26) (Figure 4).

The development of innovative whole-grain rye products is
largely driven by the increasing consumer demand for high-quality
foods rich in DF and bioactive compounds (144, 145). In response,
the food industry is developing products with unique flavors,
including confectionery items enriched with health-promoting
components (146).

However, processing can have both beneficial and detrimental
impacts on the nutrients and bioactive compounds in grains.
In whole-grain processing, this may affect the bioavailability of
bioactive compounds. In fermented, germinated rye, increases in
folate, free PAs, total phenolics, lignans, and alkylresorcinols have
been reported (147). Carbohydrate levels of rye bread can increase,
while the total DF, B-glucan, and fructan contents may decrease
when yeast fermentation and extrusion are used (148).

The starch hydrolysis rate and post-prandial glucose response
of dense foods (e.g., pasta) are lower than those of white bread
(149). Fermentation enhances starch hydrolysis, but sourdough
acids can reduce the rate of gastric emptying (150). Prolonged
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sourdough fermentation alters the metabolite profile of whole-
grain rye compared with milder whole-grain wheat, significantly
increasing branched-chain amino acids (BCAAs) and their
metabolites, microbial metabolites of phenolic acids, and other
potentially bioactive compounds (6).

Fermentation, extrusion, and sourdough methods play a key
role in shaping the nutritional benefits and bioactive-compound
profile of rye products. While certain processes enhance the
bioavailability of compounds like phenolics, BCAAs, and folates,
others may reduce dietary fiber and modify carbohydrate levels.
Understanding these implications is essential for developing rye-
based foods that maximize health benefits while maintaining
desirable sensory attributes. Ongoing research and innovation
processes are crucial to enhancing rye products and benefiting
consumer health and acceptance.

7 Environmental and socio-economic
aspects of rye cultivation and
consumption

7.1 Sustainability and environmental impact
Addressing food security in the face of climate change

requires transformative approaches that integrate human health
and environmental sustainability (151). Advantages of rye over
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FIGURE 4
Nutrition quality of rye and rye products.

/

other cereals in sustainable agriculture strategies are presented in
. Rye offers a promising solution, particularly in northern
Europe, where its resilience to cold and poor soils has historically
outperformed wheat and barley (152). Recent studies have shown
that rye emits ~20% fewer greenhouse gases and has a carbon
footprint that is ~8% smaller compared to wheat, reinforcing its
role in climate-friendly agriculture (153). Boosting rye production
aligns with EU goals for a sustainable, low-emission future,
and improving rye breeding is key to increasing its viability in
contemporary farming.
Climate change has increased interest in more resilient,

improved varieties (including hybrid rye) (154). Rye requires fewer
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fertilizers and pesticides than other cereals, making it a low-
input crop that enhances soil health and biodiversity. As a winter
cover crop, rye can help prevent soil erosion, suppress weeds, and
improve soil quality (155). Moreover, double-cropping with winter
rye reduces excess nitrogen, promoting sustainable intensification
of agriculture (156). In summary, rye’s environmental resilience,
low input requirements, and multiple soil health benefits make it a
vital crop for advancing sustainable agriculture and addressing the

challenges of climate change.

7.2 Economic and social aspects

Rye has been cultivated for many thousands of years and is well-
known for its cold resistance and ability to grow in low-fertility
soil. Today, rye is integrated into grain production systems, mainly
within the North German Plain, extending to Poland, Ukraine,
Belarus, Scandinavia, and the Baltic countries. Whereas, the world
average annual consumption of rye as food is only 1kg per capita,
it ranges from over 30-35kg per capita in Poland, Lithuania, and
Estonia to 10-15kg per capita in Finland, Denmark, Sweden, and
Germany (12, 15).

Winter rye plays a significant role in the economies and food
cultures of countries where it is cultivated on over 90 thousand
hectares, including Belarus, Denmark, Germany, Poland, Spain,
and Ukraine (12). In recent years, its cultivation has also expanded
in countries like China, Canada, and the United States (12).

Rye cultivation practices reduce dependence on high-
impact animal protein production, thereby supporting global
)
contributing to both environmental protection and healthier
with
goals. Due to its unique phytochemical composition and
high foods,
artisan bread and crackers, rye is also becoming attractive

initiatives to remain within planetary boundaries (

dietary patterns in line international sustainability

cultural significance in traditional such as
to health-conscious consumers who are preserving culinary
traditions (7).

Nowadays, especially in Nordic countries, in addition to regular
bread and bakery products, various food products made from
rye (crisps, snacks, porridges, breakfast cereals, etc.) can already
be found on the market, with the number of these products
is constantly growing (158). New rye products are developed
with diverse objectives. The food industry is seeking to develop
new rye-based products, such as breakfast cereals, cracker chips,
beverages, and snacks. These innovations expanded the assortment
of rye products and attracted consumers seeking novel healthy
foods (20). As consumer awareness of healthy eating increases,
so does the demand for healthier products with higher dietary
fiber and bioactive compound content. For this reason, new
) and rye baked

goods enriched with fiber and bioactive compounds (160, ).

rye milling products are being developed (

An innovative solution for developing new rye-based products
is the application of extrusion-based 3D printing techniques to
produce whole-grain flour-based snacks (162). In addition, in
recent years, the possibilities of using rye products to produce
higher-nutritional-value gluten-free baked goods have been widely

explored (163).


https://doi.org/10.3389/fnut.2025.1666455
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org

Zadeike et al.

10.3389/fnut.2025.1666455

Less dependent of fertilizers and pesticides

Prevents soil erosion and suppresses weeds

Resilience to cold and enhances soil
health and biodiversity

Smaller carbon footprint
Lower greenhouse gases emissions

FIGURE 5
Advantages of rye to other cereals in sustainable agriculture strategies.

Reduces excess nitrogen

7.3 Challenges and opportunities of a rye
whole-grain diet

Despite their numerous benefits, whole grains face challenges,
such as lengthy production times, perceived digestive issues, and
competition from refined-grain products. Advanced processing
techniques improve the digestibility and sensory quality of food,
making these crops more accessible to a wider society (7, 164).
Cultural attachment to meat, limited culinary knowledge, and
concerns about affordability further hinder their widespread
use (165). The development of affordable, innovative products
and the dissemination of information to the wider public can
increase their attractiveness and lead to greater integration in
diets (166, 167).

Food intolerance is now being diagnosed in an increasing
share of the population (168), making it difficult to adopt a
balanced and diverse diet. In recent years, much attention has
been paid to the development of higher-nutritional-value gluten-
free products (169). Whole-grain rye products can be used
to produce gluten-free bakery products by using a sourdough
treated with specific peptidases that break down the gluten
proteins, allowing the gluten-free claim (163). During sourdough
fermentation, gluten proteins are broken down into harmless
fragments. However, the degradation of toxic peptides during
sourdough fermentation is often incomplete, and residual peptides
are sufficient to trigger deleterious effects on people with CD
(170). Moreover, standardization of the fermentation procedure
is also challenging during production due to the microbiological
variabilities in sourdough (171).

Concerning the conditions of the fermentation, some studies
presented promising results of mixtures of probiotic LAB strains
and long-term fermentation for decreasing contamination risk in
gluten-free food (172). Mixed cultures of lactic acid bacteria in
sourdough were shown to be more effective in reducing gluten
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and their toxic peptides than monocultures; furthermore, the
addition of fungal proteases during sourdough improves gluten
degradation, reaching <20 mg/kg (173, 174). Fungal food-grade
proteases from Aspergillus oryzae and Aspergillus niger gave rather
promising results for the complete elimination of gluten from
wheat-based products. However, the elimination of gluten proteins
has technological disadvantages, as the formation of the gluten
network is essential for baking quality. Therefore, the targeted
degradation of toxic epitopes would be an optimal solution
for the future (175). Rye products produced in this manner
can increase the choice of high-quality gluten-free food options
for consumers.

Demographic analyses reveal that younger urban populations
are more receptive to the paradigms of a plant-based diet, which
highlights the importance of targeted communication strategies
to increase the adoption of healthy diets (164, 176). Ready-to-
consume cereal-based products and protein-enriched rye foods are
convenient to use, making these nutrient-rich products suitable for
time-constrained modern consumers (177).

7.4 The role of policy and culinary
education

Political action is essential to integrate target food crops into
global dietary systems. Policies that combine traditional knowledge
with new concepts can improve the visibility and accessibility
of sustainable foods (178). Integrating relevant environmental
narratives into policy and education initiatives can improve
public understanding. By placing dietary transitions in a broader
ecological and health context, policymakers can more effectively
stimulate consumer behavioral changes (179).
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Today, most rye is consumed as sifted flour with variable
extraction rates across different Scandinavian countries. Rye is
mostly consumed as sifted flour in Scandinavia, and its extraction
rates affect the amount of fiber and other compounds retained (17).
For example, Denmark offers two types of sifted rye flour (88% and
80%), Sweden has 80%, and Norway has 75% (17). In population
studies, it is important to consider this fact when comparing health
effects after intake of refined cereal products vs. whole-grain foods.

Professional culinary education programs that incorporate
rye products into institutional and commercial food preparation
can further promote these dietary alternatives. Engaging food
professionals and businesses is a critical strategy for sustainable
food choices and integration (180). Policies that encourage reduced
consumption of animal products, combined with consumer
education and promotion of plant-based food alternatives, are
critical to addressing nutritional and environmental concerns.
Integrating environmental and health considerations into
campaigns can enhance consumer receptivity and drive meaningful
change (177, 181).

Effective policy measures and targeted educational initiatives
are essential to increase the visibility and consumption of rye as a
sustainable and nutritious food source. By combining traditional
knowledge with modern environmental and health narratives,
policymakers can better motivate consumers to adopt plant-based
diets that include rye products. Additionally, integrating rye into
food industry practices will help normalize its use and expand
its presence in institutional and commercial settings. Together,
these efforts can foster meaningful dietary shifts that enhance both
human health and environmental sustainability.

8 Conclusion

Rye is a highly versatile and sustainable cereal crop with
exceptional nutritional, ecological, and economic value. Integrating
rye alongside protein-rich legumes, such as peas, beans, and
chickpeas, into sustainable food production systems could
contribute significantly to global goals of reducing greenhouse gas
emissions and improving dietary sustainability.

Rye and rye-derived products already play a significant role in
cereal-based diets across Europe due to their high content of dietary
fiber, protein, bioactive compounds, and essential micronutrients.
Compared with wheat, rye offers a more balanced nutrient profile.
However, its gluten content remains a barrier for people with
celiac disease. This contrast highlights both the strengths and the
limitations of rye as a dietary staple.

From a nutritional perspective, rye is abundant in dietary fiber,
vital minerals, and bioactive compounds. It promotes digestive
health, helps stabilize blood sugar levels, and supports bone health.
From an ecological perspective, its ability to thrive in challenging
growing environments with relatively low ecological impact makes
rye an ideal candidate for sustainable agriculture. When combined
with legumes, it can further enhance biodiversity and contribute to
mitigating climate change.

Beyond its nutritional and ecological benefits, the successful
integration of rye into future food systems will depend on the
implementation of supportive strategies at the societal level.
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Robust policy initiatives that combine traditional agricultural
practices with contemporary sustainability objectives, along
with nutritional and culinary education for both industry
professionals and consumers, are essential. These measures can
raise awareness, strengthen consumer acceptance, and encourage
healthier dietary changes.

In summary, these factors underscore rye’s vital role in fostering
resilient, nutritious, and environmentally sustainable food systems
that support both public health goals and ecological responsibility.

9 Future directions

Future directions for rye research and development include
exploring novel processing methods to enhance the technological
properties of rye, developing more appealing rye-based products
to increase consumer acceptance, improving their nutritional
density, investigating the mechanisms underlying health benefits,
and promoting sustainable cultivation through diversified crop
rotations to enhance grain quality.

Another priority is making rye-based products more suitable
for people with celiac disease and gluten intolerance. Fermentation
and enzyme-based processing also hold promise for producing
gluten-reduced or gluten-free rye foods without compromising
their nutritional value.

Equally important are advances in processing technologies.
Innovative approaches such as controlled fermentation, enzymatic
hydrolysis, and improved milling techniques can enhance dough
rheology, baking performance, and the release of bioactive
compounds. These technological improvements will not only
support the production of healthier bread and bakery products
but also pave the way for applications in feed, biomaterials,
and pharmaceuticals.

Ongoing improvements in breeding, processing, and product
development should be matched with efforts to meet changing
consumer expectations. The growing demand for functional,
sustainable, and health-promoting foods highlights the need for
rye-based innovations that strike a balance between sensory
quality and nutritional benefits. This creates opportunities for both
traditional products, such as dark breads, and novel offerings,
including gluten-free snacks and functional foods enriched with
bioactive compounds.

Finally, policy frameworks and educational initiatives will be
critical for ensuring the widespread adoption of rye in global
food systems. Supportive regulations, incentives for sustainable
farming practices, and awareness campaigns can help integrate
rye into mainstream diets. Nutritional education for consumers
and training for food industry professionals can further increase
acceptance and demand, ensuring that the benefits of rye are fully
realized in future food systems.
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